

Revenues from storage in a competitive energy market: empirical evidence from Great Britain

> UK Energy Storage Conference Warwick University – 25 November 2014

Monica Giulietti, joint work with:

Luigi Grossi (Universita' di Verona) and Michael Waterson (University of Warwick)

Introduction and motivation

- Increased role of intermittent renewable sources of energy makes storage a desirable option, despite cost
- Main focus on wind power and ability to deal with week-long calms
- Energy storage facilities will be provided through a market system, rather than being subject to command imperatives
- Given existing energy market system, what arbitrage conditions make it privately worthwhile to build and run the facility?

The 'park spread' concept

- Storage facility arbitrage strategy which maximises the expected profits, while limiting the risk associated with price volatility (risk free strategy).
- Storage can participate in the forward market buying electricity when prices are low and selling it for delivery at time T in the future.
- The inter-temporal price gap needs to meet at least a 'conservative' efficiency rate of the facility (current technology: 60-70%).

Observed price patterns (2004)

The park-spread index

 Profitability of storing power purchased at time t and sold on the same day in the forward market for delivery in the future N periods ahead can be defined as:

$$\frac{F_{t,t+N} - S_t}{S_t}$$

 The owner of the storage facility aims to exploit arbitrage opportunities to discharge at a point in the future for given levels of round trip efficiency.

Data source:

Platts UK Power Market database

- Day-ahead power assessments, base load and peak price.
 - **Baseload assessments** refer to delivery from 23:00 on the day of trade to 23:00 the day after
 - **Peak assessments** are for delivery 7:00 to 19:00 on the day following trade
- Week-ahead power assessments, peak (for delivery Monday to Friday the following week).
- **Month-ahead** peak assessment for delivery in the 4(5) weeks following trade.
- Daily frequency (5 working days) from March 2001 to November 2012. All prices measured in £/MWh.

Analysis of profitability conditions

Year		60%	70%	Year		60%	70%
2001	rdb.wp	0	0.1	2007	rdb.wp	0.06	0.22
	rdb.mp	0	0.3		rdb.mp	0.22	0.41
2002	rdb.wp	0.1	0.2	2008	rdb.wp	0.03	0.1
	rdb.mp	0.1	0.3		rdb.mp	0.07	0.15
2003	rdb.wp	0.1	0.3	2009	rdb.wp	0	0
	rdb.mp	0.2	0.4		rdb.mp	0	0.03
2004	rdb.wp	0.1	0.2	2010	rdb.wp	0	0
	rdb.mp	0.1	0.3		rdb.mp	0	0
2005	rdb.wp	0	0.1	2011	rdb.wp	0	0
	rdb.mp	0	0.2		rdb.mp	0	0
2006	rdb.wp	0.1	0.2	2012	rdb.wp	0	0
	rdb.mp	0.2	0.4		rdb.mp	0	0

Day-ahead (baseload) to week-ahead (peak), Day-ahead (baseload) to month-ahead (peak)

Summary of results (1)

- Profitable gaps between day-ahead and forward prices which are compatible with efficiency rates are observed with reasonable frequency over a period 10 years, especially around 2005-2008, but not in the last 3 years.
- Occurrence of profitable arbitrage opportunities is more prevalent with monthly horizon and for the higher level of round trip efficiency (70%).

Short term arbitrage opportunities

- Limited arbitrage opportunities over medium to long term
- Trading base load Vs peak power intra-day exploits higher efficiency of the electricity system
- Illustrated by baseload Vs peak returns intra-day
- This could make forms of storage such as batteries profitable for sufficient levels of capacity

Day ahead peak – base load returns

Returns on average about 20%, but lower after 2009/2010

Modelling the 'the park spread': methodology

- Stationarity tests: KPSS (no unit root) and Phillips-Perron (unit root)
- Seasonal ARIMA leading to residuals which are nearly white-noise (residual noise due to intraday aggregation).
- Extreme value theory suitable to model markets with a pattern of D-S imbalances (rather than anomalous behaviour).

Stationarity analysis: park spread measure

	Day ahead baseload day ahead peak	Day ahead baseload Week ahead peak	Day ahead baseload Month ahead peak
KPSS test statistic			
(H ₀ no unit root)	0.263	0.251	0.166
Test critical values (1% level)	0.216	0.216	0.216
Test critical values (5% level)	0.146	0.146	0.146
Phillips-Perron test statistic			
(H ₀ unit root)	-11.979	-15.548	-10.007
Test critical values (1% level)	-3.968	-3.968	-3.968
Test critical values (5% level)	-3.415	-3.415	-3.415

Dynamic analysis: ARIMA model

	Day ahead baseload Day ahead peak	Day ahead baseload Week ahead peak	Day ahead baseload Month ahead peak
SAR1 coefficient	0.6979 (***)	0.6040 (***)	0.7180 (***)
Intercept	8.3914 (***)	9.2110 (***)	10.7162 (***)
Adjusted R ² (seasonal			
regression with dummies)	0.7497	0.6462	0.8155

Seasonal ARIMA(1,0,0) model with weekly seasonality (5 working days)

Summary of results (2)

- The stationarity analysis points towards integration of order 1, leading to a model in first differences
- The park spread measures modelled as ARIMA(1,0,0) with 5 periods seasonality generate nearly white noise residuals (with discrepancies due to intra-day aggregation).

Extreme value theory analysis

- Threshold for extreme values exogenously determined by technology, round trip efficiency implies thresholds of 0.6 and 0.429 respectively
- Insufficient observations for reliable analysis for 60%.
- At 70% r.t.e. we have 335 observations. 11.5% of the observations for the original series
- With 11.5% of observations we estimated a Generalized Pareto distribution which satisfactorily fits the theoretical one (density plot). Both form and scale parameters are highly significant.
- Same process for SARIMA residuals to check for autocorrelated effects, this generates even better fit.

Extreme values analysis: original series (70% r.t.e.)

Density Plot

Extreme values analysis: park spread measure (70% r.t.e.)

Density Plot

Summary of results (3)

- We adopt EVT as method to assess the likelihood of arbitrage opportunities arising in the forward markets in future periods (rather than predicting expected returns).
- We are able to model and forecast the extreme values which make the exploitation of arbitrage opportunities profitable for the highest level of round trip efficiency, with up to 1 year horizon.

Conclusions

- Despite their social benefits, if storage facilities are to be provided privately their commercial appeal will depend on their expected profitability.
- One potential source of profitability is the exploitation of arbitrage opportunities in forward markets.
- Evidence from the UK indicates that these opportunities were present in the last decade but have not been observed in the last 3 years (impact of economic recession?).
- Extreme value theory can be used effectively to forecast arbitrage opportunities up to one year ahead

Thank you